Bibliografische Daten
ISBN/EAN: 9783540008903
Sprache: Englisch
Umfang: xliii, 428 S., 59 s/w Illustr.
Format (T/L/B): 3.1 x 24.1 x 16.4 cm
Einband: gebundenes Buch
Beschreibung
Inhaltsangabe1. What is Mathematics?- 2. The Mathematics Laboratory.- 3. Introduction to Modelling.-4. A very short Calculus Course.- 5. Natural Numbers and Integers.- 6. Mathematical Induction.- 7. Rational Numbers.- 8. Pythagoras and Euclid.- 9. What is a Function?-10. Polynomial Function.- 11. Combinations of Functions.- 12. Lipschitz Continuity.- 13. Sequences and Limits.- 14. The Squareroot of Two.- 15. Real Numbers.- 16. The Bisection Algorithm for f(x)=0.- 17. Do Mathematicians Quarrel?- 18. The function y = xr.- 19. Fixed Points and Contradiction Mapping.- 20. Analytic Geometry in R2.- 21. Analytic Geometry in R3.- 22. Complex Numbers.- 23. The Derivative.- 24. Differentiation Rules.- 25. Newton's Method.- 26. Galileo, Newton, Hooke, Malthus and Fourier.
Produktsicherheitsverordnung
Hersteller:
Springer Verlag GmbH
juergen.hartmann@springer.com
Tiergartenstr. 17
DE 69121 Heidelberg
Inhalt
1. What is Mathematics?-2. The Mathematics Laboratory.-3. Introduction to Modelling.-4.A very short Calculus Course.-5. Natural Numbers and Integers.-6. Mathematical Induction.-7. Rational Numbers.-8. Pythagoras and Euclid.-9. What is a Function?-10. Polynomial Function.- 11. Combinations of Functions.-12. Lipschitz Continuity.- 13. Sequences and Limits.-14. The Squareroot of Two.-15. Real Numbers.- 16. The Bisection Algorithm for f(x)=0.-17. Do Mathematicians Quarrel?-18. The function y = xr.-19. Fixed Points and Contradiction Mapping.-20. Analytic Geometry in R2.-21. Analytic Geometry in R3.-22. Complex Numbers.-23. The Derivative.- 24. Differentiation Rules.- 25. Newton''s Method.-26. Galileo, Newton, Hooke, Malthus and Fourier.
Schlagzeile
InhaltsangabeVolume 1.- 1 What is Mathematics?.- 2 The Mathematics Laboratory.- 3 Introduction to Modeling.- 4 A Very Short Calculus Course.- 5 Natural Numbers and Integers.- 6 Mathematical Induction.- 7 Rational Numbers.- 8 Pythagoras and Euclid.- 9 What is a Function?.- 10 Polynomial functions.- 11 Combinations of functions.- 12 Lipschitz Continuity.- 13 Sequences and limits.- 14 The Square Root of Two.- 15 Real numbers.- 16 The Bisection Algorithm for f (x) = 0.- 17 Do Mathematicians Quarrel?*.- 18 The Function y = xr.- 19 Fixed Points and Contraction Mappings.- 20 Analytic Geometry in ?2.- 21 Analytic Geometry in ?3.- 22 Complex Numbers.- 23 The Derivative.- 24 Differentiation Rules.- 25 Newton's Method.- 26 Galileo, Newton, Hooke, Malthus and Fourier.- References.