Beschreibung
This textbook is an application-oriented introduction to the theory of distributions, a powerful tool used in mathematical analysis. The treatment emphasizes applications that relate distributions to linear partial differential equations and Fourier analysis problems found in mechanics, optics, quantum mechanics, quantum field theory, and signal analysis. The book is motivated by many exercises, hints, and solutions that guide the reader along a path requiring only a minimal mathematical background.
Produktsicherheitsverordnung
Hersteller:
Springer Basel AG in Springer Science + Business Media
juergen.hartmann@springer.com
Heidelberger Platz 3
DE 14197 Berlin
Inhalt
Preface.- Standard Notation.- 1 Motivation .- Problems.- 2 Test Functions.- Problems.- 3 Distributions.- Problems.- 4 Differentiation of Distributions.- Problems.- 5 Convergence of Distributions.- Problems.- 6 Taylor Expansion in Several Variables.- Problems.- 7 Localization.- Problems.- 8 Distributions with Compact Support.- Problems.- 9 Multiplication by Functions.- Problems.- 10 Transposition: Pullback and Pushforward.- Problems.- 11 Convolution of Distributions.- Problems.- 12 Fundamental Solutions.- Problems.- 13 Fractional Integration and Differentiation .- 13.1 The Case of Dimension One.- 13.2 Wave Family.- 13.3 Appendix: Euler¿s Gamma Function.- Problems.- 14 Fourier Transform.- Problems.- 15 Distribution Kernels.- Problems.- 16 Fourier Series.- Problems.- 17 Fundamental Solutions and Fourier Transform.- 17.1 Appendix: Fundamental Solution of .Ii''½/k.- Problems.- 18 Supports and Fourier Transform.- Problems.- 19 Sobolev Spaces.- Problems.- 20 Appendix: Integration.- 21 Solutions to Selected Problems.- References.- Index of Notation.- Index.