0

Model-Based Reinforcement Learning

From Data to Continuous Actions with a Python-based Toolbox, Wiley-IEEE Press Book Series on Control Systems Theory and Applications

Erschienen am 09.12.2022, 1. Auflage 2023
125,00 €
(inkl. MwSt.)

Nachfragen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9781119808572
Sprache: Englisch
Umfang: 272 S.
Einband: gebundenes Buch

Beschreibung

Model-Based Reinforcement Learning Explore a comprehensive and practical approach to reinforcement learning Reinforcement learning is an essential paradigm of machine learning, wherein an intelligent agent performs actions that ensure optimal behavior from devices. While this paradigm of machine learning has gained tremendous success and popularity in recent years, previous scholarship has focused either on theory--optimal control and dynamic programming - or on algorithms--most of which are simulation-based. ModelBased Reinforcement Learning provides a modelbased framework to bridge these two aspects, thereby creating a holistic treatment of the topic of modelbased online learning control. In doing so, the authors seek to develop a modelbased framework for datadriven control that bridges the topics of systems identification from data, modelbased reinforcement learning, and optimal control, as well as the applications of each. This new technique for assessing classical results will allow for a more efficient reinforcement learning system. At its heart, this book is focused on providing an endtoend frameworkfrom design to applicationof a more tractable modelbased reinforcement learning technique. ModelBased Reinforcement Learning readers will also find: * A useful textbook to use in graduate courses on data-driven and learning-based control that emphasizes modeling and control of dynamical systems from data * Detailed comparisons of the impact of different techniques, such as basic linear quadratic controller, learning-based model predictive control, model-free reinforcement learning, and structured online learning * Applications and case studies on ground vehicles with nonholonomic dynamics and another on quadrator helicopters * An online, Python-based toolbox that accompanies the contents covered in the book, as well as the necessary code and data ModelBased Reinforcement Learning is a useful reference for senior undergraduate students, graduate students, research assistants, professors, process control engineers, and roboticists.

Produktsicherheitsverordnung

Hersteller:
Wiley-VCH GmbH
product_safety@wiley.com
Boschstr. 12
DE 69469 Weinheim

Autorenportrait

Milad Farsi received the B.S. degree in Electrical Engineering (Electronics) from the University of Tabriz in 2010. He obtained his M.S. degree also in Electrical Engineering (Control Systems) from the Sahand University of Technology in 2013. Moreover, he gained industrial experience as a Control System Engineer between 2012 and 2016. Later, he acquired the Ph.D. degree in Applied Mathematics from the University of Waterloo, Canada, in 2022, and he is currently a Postdoctoral Fellow at the same institution. His research interests include control systems, reinforcement learning, and their applications in robotics and power electronics. Jun Liu received the Ph.D. degree in Applied Mathematics from the University of Waterloo, Canada, in 2010. He is currently an Associate Professor of Applied Mathematics and a Canada Research Chair in Hybrid Systems and Control at the University of Waterloo, Canada, where he directs the Hybrid Systems Laboratory. From 2012 to 2015, he was a Lecturer in Control and Systems Engineering at the University of Sheffield. During 2011 and 2012, he was a Postdoctoral Scholar in Control and Dynamical Systems at the California Institute of Technology. His main research interests are in the theory and applications of hybrid systems and control, including rigorous computational methods for control design with applications in cyber-physical systems and robotics.

Leseprobe

Leseprobe